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Abstract

Sequence alignment profiles have been shown to be very powerful in creating accurate sequence alignments.
Profiles are often used to search a sequence database with a local alignment algorithm. More accurate and
longer alignments have been obtained with profile-to-profile comparison. There are several steps that must
be performed in creating profile–profile alignments, and each involves choices in parameters and algo-
rithms. These steps include (1) what sequences to include in a multiple alignment used to build each profile,
(2) how to weight similar sequences in the multiple alignment and how to determine amino acid frequencies
from the weighted alignment, (3) how to score a column from one profile aligned to a column of the other
profile, (4) how to score gaps in the profile–profile alignment, and (5) how to include structural information.
Large-scale benchmarks consisting of pairs of homologous proteins with structurally determined sequence
alignments are necessary for evaluating the efficacy of each scoring scheme. With such a benchmark, we
have investigated the properties of profile–profile alignments and found that (1) with optimized gap pen-
alties, most column–column scoring functions behave similarly to one another in alignment accuracy; (2)
some functions, however, have much higher search sensitivity and specificity; (3) position-specific weight-
ing schemes in determining amino acid counts in columns of multiple sequence alignments are better than
sequence-specific schemes; (4) removing positions in the profile with gaps in the query sequence results in
better alignments; and (5) adding predicted and known secondary structure information improves align-
ments.
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The goal of homology modeling (also known as compara-
tive modeling) is to build an accurate three-dimensional
model of a protein of unknown structure from the experi-
mentally determined structure of one or more evolutionarily
related proteins. This requires identifying proteins of known
structure homologous to the target sequence and producing
accurate and complete sequence–structure alignments be-
tween them. Even when identifying the correct homolog is
accomplished, sufficient alignment quality is often still a
challenge when the sequence identities fall below 30%
(Sauder et al. 2000).

Accurate sequence alignment between a target sequence
and a parent structure to be used as template for modeling is
now usually determined with the help of other protein se-
quences related to both target and parent sequence. Such
multiple sequence information is often represented in some
form of profile, a matrix of dimensions 20 × L (or 21 × L if
information on gaps is contained in the profile), where L is
usually the length of the target or query sequence. The
profile contains information on the proportion of each
amino acid in each column of a multiple sequence align-
ment of proteins related to the query sequence. Profiles were
originally proposed by Gribskov et al. (1987) as a means for
database search. They proposed that profiles could be con-
structed both from related sequences and using structural
information to determine which amino acids were likely at
each position of a known structure and to determine posi-
tion-specific gap penalties. Somewhat later they also pro-
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posed using secondary-structure-specific substitution matri-
ces and including surface accessibility in determining the
profile (Luthy et al. 1991).

The use of profiles has greatly accelerated with the de-
velopment of the PSI-BLAST program by Altschul et al.
(1997). PSI-BLAST uses heuristics to search protein data-
bases rapidly for sequences with good alignment scores to a
query sequence. From these sequences and a pairwise amino
acid substitution matrix (Henikoff and Henikoff 1993), a
profile is constructed that contains the log-odds scores (rela-
tive to database frequency) of each amino acid at each po-
sition of the query sequence. This profile matrix is then used
to search the same database again, but now the position-
specific scores are used to evaluate alignments instead of
pairwise amino acid comparisons. High-scoring sequences
in the second round are used to build a new profile, and the
iteration continues.

A generalization of profile-to-sequence database searches
and alignments was proposed by Pietrokovski (1996). In-
stead of searching a database of sequences, one can create
a database of profiles from the sequence database, each
of which contains information on a protein family. This
profile database can now be searched with a profile con-
structed from a query protein family of interest using pro-
file-to-profile alignments. Several groups have published
profile-to-profile alignment methods (Pietrokovski 1996;
Rychlewski et al. 1998, 2000; Yona and Levitt 2002; Pan-

chenko 2003; Sadreyev and Grishin 2003; von Öhsen and
Zimmer 2003; von Öhsen et al. 2003). Most of these use the
standard Smith-Waterman local alignment method (Smith
and Waterman 1981), but they vary significantly in a num-
ber of important respects. A schematic of the profile–profile
alignment procedure is shown in Figure 1.

The first of these is the procedure used to generate the
initial profile. PSI-BLAST is usually used to search a large
database of sequences, such as the nonredundant protein
sequence database from NCBI (Wheeler et al. 2004). Some
authors use multiple sequence alignments that can be gen-
erated by PSI-BLAST and derive a profile in the form of
frequencies or log-odds from these alignments. Others use
the log-odds profile generated by PSI-BLAST directly. In
either case, building the profile entails choices of what se-
quences to include and how (how many rounds of PSI-
BLAST, what E-value cutoffs, sequence weighting schemes
[Henikoff and Henikoff 1994], etc.) and whether to use a
substitution matrix or Dirichlet mixture (Sjolander et al.
1996) to augment the observed amino acid counts. The form
of the profile also varies in terms of whether gaps are rep-
resented in each column (i.e., each position of the query or
template sequence), and whether gaps in the query or tem-
plate sequence are represented (i.e., columns that have a gap
character in the generating query sequence).

The second major variation is the method for scoring the
alignment of one column of the query profile against a

Figure 1. Scheme for profile–profile alignments.
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column from a database or template profile. It is, in fact,
rather surprising that there is no consensus on how this
should be done, from either a theoretical or practical point
of view. The methods include correlation coefficients, Eu-
clidean distances (Pietrokovski 1996), sums over substitu-
tion matrices weighted by the query and template frequen-
cies (von Öhsen and Zimmer 2003), scores based on infor-
mation theory (Yona and Levitt 2002), and dot products of
log-odds scores with log-odds scores (Pietrokovski 1996),
frequencies with frequencies (Rychlewski et al. 2000), or
frequencies or amino acid counts with log-odds scores
(Sadreyev and Grishin 2003). With the Smith-Waterman
algorithm (Smith and Waterman 1981), pairwise scores
must on average be negative with the maximum score posi-
tive. Some scoring functions require a shift so that the
Smith-Waterman algorithm can identify common regions as
completely as possible without aligning unrelated regions,
and this is discussed in some publications on profile–profile
scoring methods.

A third variation occurs for gap penalties. Some methods,
such as the BLOCKS database alignments of Pietrokovski
(1996) and the core alignment method (Panchenko et al.
1999) used by Panchenko (2003), do not require gap pen-
alties. A recent paper by Mittelman et al. (2003) investi-
gated the different column–column scoring functions in
generating short ungapped alignments. But local and global
dynamic programming methods do require a gap penalty
that must be carefully set to produce reasonable alignments.
These parameters are usually optimized on a training set to
go with the chosen column–column scoring function. Be-
cause the predominant use of profile–profile alignments is
to generate a sequence–structure alignment, it is usually the
case that a structure is known for the sequence used to build
one of the profiles. From this structure, one can use the
secondary structure as well as surface accessibility informa-
tion.

Finally, profile–profile alignment is used to search data-
bases of profiles, usually derived from sequences of known
structure in the PDB, and to produce accurate sequence–
structure alignments of the query sequence and template
structure. Methods should therefore be tested both for their
search sensitivity and specificity as well as their alignment
accuracy and completeness. The size of benchmarks used
and whether both search and alignment accuracy have been
examined also vary among published methods.

In this paper, we explore some alternatives in each cat-
egory described above with a large benchmark of structur-
ally aligned protein pairs. We examine five issues: (1) seven
different scoring functions for comparing two profile col-
umns; (2) how to optimize gap penalties; (3) weighting
schemes; (4) whether including fewer or more divergent
sequences in each profile is helpful; and (5) whether adding
a secondary-structure substitution matrix is beneficial. The
benchmark we have derived is larger than most used in

previously published profile–profile methods. This is nec-
essary given the large variance in search efficacy and align-
ment accuracy each method exhibits over a test set.

Materials and methods

Test set

From SCOP 1.48 (Murzin et al. 1995), we derived a nonre-
dundant subset in terms of sequence identity, scop148_40,
in which no pair of sequences share >40% sequence iden-
tity. Domain definitions in this older version of SCOP are
the same as more recent versions except for a small handful
of proteins. Both the CE (Shindyalov and Bourne 1998) and
DALI (Holm and Sander 1993) programs were used to cre-
ate two sets of all possible family and superfamily (as de-
fined by SCOP) pairwise structural alignments within
scop148_40. With all DALI and CE alignments in hand, we
used the following procedure to build a benchmark data set:

1. For each protein structure alignment, we calculated the
consensus alignment rates between DALI and CE,
R � 2Nboth/(NCE + NDALI). Here Nboth is the number of
aligned pairs in common between the CE and DALI
alignments, and NCE and NDALI are the numbers of
aligned residue pairs in the CE and DALI alignments,
respectively. We calculated the average sequence iden-
tity of CE and DALI alignments, ID � (IDCE + IDDALI)/2.

2. All alignment pairs with ID > 40% were discarded.

3. Alignment pairs were selected for the test set from the
remaining pairs with the following criteria: (a) R � 0.9
or (b) consensus structural alignment length (Nboth) is
>100, and the alignment length difference between CE
and DALI is <20% of the average length of the CE and
DALI alignments.

4. We added some alignment pairs manually to compensate
for low numbers at low sequence identity or for some
SCOP families or superfamilies by relaxing the limita-
tions used in step 3. In all cases, the consensus alignment
length is greater than 40, and no pair with R < 0.5 is
included in the data set.

The resulting data set contains 3441 alignment pairs, in-
volving 1627 sequences that belong to 374 SCOP families
and 128 superfamilies. The sequence identity range is 0%–
35%. We call this group of alignments Set A (for “Accu-
racy”). About one-third of the pairs in Set A were selected
randomly to be used as a training set (1136 pairs), with the
rest serving as a testing set (2305 pairs).

To evaluate the database searching selectivity and sensi-
tivity, we constructed Set S (for “search”), which was de-
rived from Set A by using the following criteria: No more
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than two sequences in this data set belong to the same SCOP
family, and no more than 10 sequences are from the same
superfamily. Set S contains 665 sequences comprising
441,560 alignment pairs (in both directions). Of these, 3320
pairs are true positives, and all others are false positives.
True positives were defined in such a way that either both
sequences in the alignment belong to the same SCOP fold
designation or they are both classified in SCOP as Ross-
mann-like folds. The Rossmann-like fold consists of a par-
allel �-sheet in the order 32145, often decorated by varying
numbers of �-helices and additional sheet strands. In SCOP
1.48, there are 25 different folds annotated as Rossmann-
like fold, and many of these are putatively homologous
(Sadreyev and Grishin 2003).

Profile generation

PSI-BLAST (Altschul et al. 1997) was used to build mul-
tiple alignments through database searching. We used PSI-
BLAST in two ways to build multiple sequence alignments.
The first method was accomplished by searching a version
of the nonredundant protein sequence database (Wheeler et
al. 2004), nr, with low-complexity segments masked with
the seg program (Wootton 1994; length parameter � 20)
for five rounds with an E-value cutoff for both printing and
inclusion in the position-specific scoring matrix of 0.002.
The multiple sequence alignment was taken from the final
round. We call these LastRound profiles.

Because the initial multiple alignment from PSI-BLAST
usually contains many very closely related sequences, we
culled the multiple alignments using a mutual sequence
identity of 98% (PSI-BLAST culls sequences that are 98%
identical or more to the query only). On the other hand, a
PSI-BLAST multiple alignment may also contain very dis-
tantly related sequences. These sequences may create
“noise” in building the profile, either because they are false
positives, or because they are poorly aligned to the other
sequences in the multiple alignment. We therefore created
another set of multiple alignments in which not only redun-
dant sequences were removed from the alignment, but also
very distantly related sequences (sequence identity to query
<15%) were also removed. We call these CutLowIdent pro-
files.

Weighting schemes

An important step in building a profile from a multiple
alignment is weighting each sequence in the alignment. We
tested three well-established weighting schemes: (1) the
Henikoff weighting scheme (Henikoff and Henikoff 1994),
which is used in PSI-BLAST and many other profile-related
applications; (2) PSIC weighting (Sunyaev et al. 1999),
which is used in the COMPASS profile–profile alignment
algorithm (Sadreyev and Grishin 2003); (3) an FFAS-like

weighting scheme (Rychlewski et al. 2000) that we label
SeqDivergence weighting.

In Henikoff weighting, for an amino acid at position m of
sequence i, we first determine the subset of sequences that
also have an amino acid in the same column of the multiple
alignment. Each sequence in this subset may begin and end
in different columns of the multiple alignment. We find the
first column in which all of these sequences in the subset are
represented either with an amino acid or an internal gap
(i.e., excluding N- and C-terminal gaps). We call this Cleft.
Similarly, we identify the last column of this subset in
which all of these sequences are represented either with an
amino acid or an internal gap. We call this Cright. The weight
of the amino acid at position m of sequence i is then

Wi
m =

1

Cright − Cleft + 1 �
j=Cleft,Cright

1

Ndiff
j n i

j
(1)

where Nj
diff is the number of different amino acids at align-

ment position j but considering only those sequences in the
subset, and ni

j is the total number of the same amino acid
type as the residue of sequence i in alignment column j in
the subset.

In PSIC weighting, the weight of sequence i at alignment
position m with amino acid type a(i) is

W i
m =

neff
a

Nm
(2)

where Nm is the number of sequences that have amino acid
a(i) at position m, na

eff is the effective count of amino acid
a(i) at that position,

neff
a =

1

ln�1 −
1

20�
ln�1 −

Fa

20� (3)

where Fa is the average number of different amino acid
types per position in the sequences that have residue type
a(i) at position m. To calculate Fa, we use a similar proce-
dure as with the Henikoff weighting. For PSIC, the subset is
defined differently. It now includes only those sequences
that have the same amino acid as sequence i, not all se-
quences that have an amino acid in the column. Once we
have the subset of sequences, Cleft and Cright are defined in
the same way as in Henikoff weighting above. Fa is then the
number of different amino acids averaged over the columns
from Cleft and Cright, inclusive.

In the SeqDivergence weighting scheme, the weight of
sequence i is
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Wi =
1

1 + �
j

si, j
2

(4)

where si,j is the similarity score of sequences i and j,

si, j = max� Ai, j

min�Ai,i,Aj, j�
,0� (5)

and Ai,j is the alignment score of sequence i and j calculated
with the BLOSUM62 mutation matrix.

It should be noted that the Henikoff weighting method
assigns the same weights to amino acids in a sequence that
form the same subset, regardless of the different amounts of
variation in each column. PSIC, on the other hand, assigns
lower weights if many sequences have the same amino acid
at a particular position. Whereas Henikoff and PSIC assign
weights that vary along the sequence, SeqDivergence as-
signs a constant weight for each whole sequence.

We calculate “target” frequencies of the 20 amino acids
at each position from the observed counts weighted with
each weighting scheme listed above using the pseudocount
method used in PSI-BLAST (Altschul et al. 1997). How-
ever, the SeqDivergence weighting scheme calculates these
target frequencies by adding the “balanced family profile
frequencies” (Rychlewski et al. 2000):

fa =
�

i,a�i�=a

Wi

�
i

Wi

(6)

where fa is the weighted fraction of amino acid type a (or
gap) in the sequences aligned at a given position, Wi is the
weight of sequence i, and a(i) is the amino acid type in
sequence i at this position. From CE structural alignments
and following Rychlewski et al., we calculate the probabil-
ity of a mutation from amino acid b to a (or deletion) pb,a,
and then we use a pseudocount method to obtain amino acid
target frequencies in a given position as

Qa = �5 � �
b=1

20

fb � pb,a + fa � �
i

Wi� �N (7)

where N is a normalization coefficient that ensures that

�
a=1

21

Qa = 1

For the other methods we use the pseudocount method used
in PSI-BLAST (Altschul et al. 1997) to calculate the amino
acid target frequency at the given position.

Scoring functions

One of our goals is to test whether the choice of scoring
function for aligning positions in two profiles affects se-
quence alignment accuracy and searching sensitivity and
specificity. We implemented several scoring functions al-
ready discussed in the literature (Pietrokovski 1996;
Rychlewski et al. 2000; Yona and Levitt 2002; Sadreyev
and Grishin 2003; von Öhsen and Zimmer 2003; von Öhsen
et al. 2003). The functions we have tested are very similar
to those tested by Mittleman et al. (2003) in gapless profile–
profile alignment tests.

Sum of pairs

These scoring functions use the summation of the prod-
ucts of frequencies for both columns for every combination
of amino acid a and b. There are two variants of this func-
tion: one (CrossProduct) multiplies the products by the cor-
responding log-odds elements of the substitution matrix
BLOSUM62, sab:

S1,2 = �
a=1

20

�
b=1

20

Qa
1Qb

2sab (8)

The other function (LogAverage) multiplies the products by
the corresponding BLOSUM62 matrix amino acid substitu-
tion frequencies, qab, and takes the logarithm to get the final
profile–profile alignment scores (von Öhsen and Zimmer
2003; von Öhsen et al. 2003):

S1,2 = ln �
a=1

20

�
b=1

20

Qa
1Qb

2qab (9)

qab is the BLOSUM62 matrix frequency (calculated from
the standard log-odds form) of amino acid a being aligned
to amino acid b.

Dot product

This is the summation of the products of the frequencies
or log-odds values for both columns. Two functions in this
family have been tested, one (DotPFreq) computes the
product using frequencies:

S1,2 = �
a=1

20

Qa
1Qa

2 (10)

and the second function (DotPOdds) calculates the dot
product using log-odds values:

S1,2 = �
a=1

20

wa
1wa

2 (11)
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where

wa
1 = ln

Qa
1

pa
and wa

2 = ln
Qa

2

pa

are log-odds values with pa as the background frequency of
amino acid a.

Pearson’s correlation coefficient (CORREL)

This function was used in the LAMA method for profile–
profile comparison (Pietrokovski 1996):

S1,2 =
�
a=1

20

�wa
1 − �wa

1���wa
2 − �wa

2��

��
a=1

20

�wa
1 − �wa

1��2 �
a=1

20

�wa
2 − �wa

2��2

(12)

Jensen-Shannon function

This score function, JensenShannon, was introduced by
Yona and Levitt (2002). It involves the calculation of a
divergence score and a significance score. The divergence
score D is computed using the equation

D =
1

2��a=1

20

Qa
1log2

Qa
1

Qa
0 + �

a=1

20

Qa
2 log2

Qa
2

Qa
0� (13)

where

Qa
0 =

1

2
�Qa

1 + Qa
2�

and the significance score S is calculated by

S =
1

2��a=1

20

Qa
0log2

Qa
0

Ra
0 + �

a=1

20

pa log2

pa

Ra
0� (14)

where

Ra
0 =

1

2
�Qa

0 + pa�

The final substitution score is the combination of the
divergence score D and significance score S:

S1,2 =
1

2
�1 − D��1 + S� (15)

Symmetric log-odds multinomial score

The score function used in COMPASS, LogOddsMultin,
is a natural extension of PSI-BLAST for alignments of pro-
files with profiles (Sadreyev and Grishin 2003):

S1,2 = c1�
a=1

20

na
1wa

2 + c2�
a=1

20

na
2wa

1 (16)

where na
1 and na

2 are the effective counts for each amino acid
in columns 1 and 2, which are calculated with the following
formula (Pei et al. 2003; Sadreyev and Grishin 2003):

neff =
1

ln�1 −
1

20�
ln

20 − neff
PSIC

20
(17)

And c1 and c2 are weighting parameters to balance the con-
tribution of the two terms in the formula:

c1 =
�
a=1

20

na
2 − 1

�
a=1

20

na
1 + �

a=1

20

na
2 − 2

(18)

c2 =
�
a=1

20

na
1 − 1

�
a=1

20

na
1 + �

a=1

20

na
2 − 2

(19)

A very similar function was suggested to us by Stephen
Altschul (pers. comm.) in 2001.

Gap penalty and zero-shift parameters optimization

We use the Smith-Waterman local alignment algorithm to
align profiles (Smith and Waterman 1981). This algorithm
requires the average score between random pairs of posi-
tions from the two profiles to have a negative score, so that
alignments do not extend into unrelated regions of the two
profiles. Some of the scores described above yield only
positive scores and therefore require a “zero-shift.” We used
Set A as a training set of pairwise structure alignments to
optimize the gap penalty parameters and zero-shift value in
terms of alignment accuracy with respect to CE structural
alignments.

Three parameters were used to monitor the alignment
quality: QModeler, QDeveloper, and QCombined. QModeler and
QDeveloper were first introduced by us in Sauder et al. (2000)
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as fM and fD, standing for the quality of the alignment from
a modeler’s point of view and the quality from a developer’s
point of view. These values were renamed and used by
Yona and Levitt (2002) and by Sadreyev and Grishin
(2003), who used the Yona-Levitt names. We use the newer
names here for sake of consistency with the later papers.
QModeler is the fraction of correctly aligned positions in
the profile–profile alignment, and QDeveloper is the fraction
of correctly aligned positions in the structural alignment.
That is,

QModeler =
nC

nA
(20)

QDeveloper =
nC

nS
(21)

where nC is the number of aligned pairs in common between
the sequence and structure alignments, nA is the number of
aligned pairs in the sequence (or profile–profile) alignment,
and nS is the number of aligned pairs in the structure align-
ment. QModeler penalizes sequence alignments that are too
long; that is, when nA � nS. QDeveloper penalizes sequence
alignments that are too short; that is, when nA � nS. Taken
together, they give a picture of the good and bad features of
a sequence alignment method. Yona and Levitt introduced
another parameter, QCombined, that penalizes sequence align-
ments that are either too long or too short. It is defined as

QCombined =
nC

nT
(22)

where nT is the total number of unique alignment pairs in
either the sequence or structure alignment or both. If a pair
of residues is aligned in both the sequence and structure
alignments, it is only counted once in nT. We have found
that QCombined is more useful as a parameter for optimizing
gap parameters than either QModeler or QDeveloper. Optimiza-
tion based on QModeler results in very short alignments of the
most highly conserved regions and hence low QDeveloper

scores, whereas optimization on QDeveloper results in very
long alignments often with low QModeler scores.

We optimized the gap penalties using QCombined as the
target function for several of the scoring schemes described
above. For each scheme, we need to determine the optimal
combination of zero-shift parameter and gap-open and gap-
extension parameters. We optimized parameters on a com-
bination of five gap-open values, five zero-shift values, and
three gap-extension values, for a total of 75 sets. Gap-open
candidates were determined based on the variation scale of
column–column alignment scores; zero-shift candidates
were assigned according to the average column–column
score; and three gap-extension candidates were selected as

0.1, 0.075, and 0.05 × gap-open. If the best parameters (in
terms of QCombined) included one at the extremes of its
range, then additional values beyond that extreme were
tested. The resulting gap parameters are subsequently re-
ferred to as FullOptGaps.

This process of optimizing the parameters for each indi-
vidual pair function by testing the whole training set on 75
parameter sets is very time-consuming. Rychlewski et al.
(2000) have introduced a protocol for determining gap pen-
alties and zero-shift parameters in their FFAS profile–pro-
file alignment method by transforming column–column
scores into the standard normal (� � 0; � � 1) distribu-
tion, and determining the gap penalties for scores that fol-
low a standard normal distribution. We compared the results
of this protocol to the optimization over 75 parameter sets
(see Results).

In the Results section, we call the gap parameters deter-
mined by this procedure FittedGaps. In this procedure, ev-
ery aligned pair has its own transformation as follows: First,
the L1 columns of profile 1 are compared with the L2 col-
umns of profile 2 using a particular scoring scheme
(CrossProduct, Jensen-Shannon, etc.), and the average �
and standard deviation � of the L1 × L2 scores are calcu-
lated. The score for any pair of columns S1,2 is then trans-
formed to the standard normal distribution:

S�1,2 =
S1,2 − �

�
(23)

The scoring function used to align the two profiles includes
a constant zero-shift term to produce an average score that
is negative:

S�1,2 = S�1,2 − 0.12 (24)

The gap penalties as well as the zero-shift value used in this
scheme are those provided by Rychlewski et al. (2000),
optimized on the UCLA-DOE fold recognition benchmark
(Fischer et al. 1996).

Gaps in profiles

PSI-BLAST produces profiles that are the length of the
query sequence. That is, all columns in the multiple se-
quence alignment with a gap character in the query se-
quence are excluded from the profile. We used this method
to create profiles we refer to as NoGapsInQuery. We
also created profiles that included these columns to test
whether this procedure improves alignments of search se-
lectivity. In the Results section, these profiles are referred to
as GapsInQuery profiles.
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Adding secondary structure similarity measures

A secondary structure substitution matrix was determined
for use in profile–profile alignments as follows: Because the
primary purpose for profile–profile alignments is usually to
determine distant relationships between proteins of un-
known structure and those of known structure, we have
determined an asymmetric substitution matrix between pre-
dicted secondary structures and known structures. A similar
substitution matrix for predicted versus experimental sec-
ondary structures has been used by Ginalski et al. (2003) in
their ORFEUS server. Secondary structure for the proteins
in Set A was predicted from output profiles from the last
round of PSI-BLAST using the PSI-PRED program (Jones
1999), and the experimental secondary structures were de-
termined from the corresponding PDB files with the pro-
gram Stride (Frishman and Argos 1995). The substitution
matrix was determined using a standard procedure (Heni-
koff and Henikoff 1993) from the structure alignments of
proteins in Set A as determined by the program CE.

To use the secondary structure substitution matrix, we
need to balance this matrix with the column–column scores
for each scoring scheme. First, both the column–column
scores and the secondary structure scores were adjusted to
the standard normal distribution, as in the equation for S�1,2

above. Second, we set the fraction of column–column score
and secondary structure score from x of 0.50 to 0.90 in steps
of 0.05:

T�1,2 = xS�1,2 + �1 − x�R�1,2 (25)

where T is the total score and R is the secondary-structure
matrix substitution score. This score is then shifted to the
standard normal, and the zero-shift of 0.12 is used to pro-
duce the final score.

Results

Comparing seven functions

We compared the alignment accuracy and search sensitivity
and specificity of seven profile–profile scoring schemes
proposed previously. These scoring schemes are all func-
tions of the frequencies in columns of multiple alignments
of proteins in a particular family. These seven scoring func-
tions are: (1) CrossProduct, which is a sum over all pairs
of amino acid types (20 × 20 � 400) from the two profiles
of the frequencies multiplied by the log-odds score for that
pair from the BLOSUM matrix; (2) LogAverage (von
Öhsen and Zimmer 2003; von Öhsen et al. 2003) uses the
sum over the 400 products of the profile frequencies times
the substitution frequency in the BLOSUM matrix, and
then takes the log of this sum; (3) DotPFreq is the dot
product of the profile frequency vectors; (4) DotPOdds is
the dot product of the log-odds of the frequencies from the

two profiles; (5) Correl (Pietrokovski 1996) is the Pearson’s
correlation coefficient on the log-odds from the profile; (6)
JensenShannon (Yona and Levitt 2002) is the Jensen-Shan-
non entropy of the profile; (7) LogOddsMultin (Sadreyev
and Grishin 2003) uses the dot products of amino acid
counts from one profile with the log-odds of the other pro-
file.

To compare these scoring functions fairly, we optimized
the gap-open, gap-extension, and zero-shift parameters for
each scheme independently of the others. We optimized the
gap parameters based on the value of QCombined, as de-
scribed in Materials and Methods. QCombined is the fraction
of correct pairs aligned out of the total number of unique
aligned pairs in either the predicted sequence alignment or
structure alignment to which it is compared (Yona and Lev-
itt 2002). The optimized parameters are listed in Table 1. A
comparison of the alignment accuracy and search sensitiv-
ity-specificity for these functions is shown in Figure 2. At
the top of the figure, other choices in the profile–profile
alignment protocol that were used to generate the data in the
figure are also listed. In the case of Figure 2, the LastRound
multiple sequence alignments were used, the Henikoff
weighting scheme was used, and no secondary structure
information (NoSecStr) was included. In this figure and the
subsequent figures, NoGapsInQuery was used (see below).
In Figure 2, we show the values of QModeler, QDeveloper, and
QCombined as a function of sequence identity. QModeler is the
fraction of correctly aligned pairs out of the number of
aligned pairs in the predicted sequence alignment. QDeveloper

is the fraction of pairs in the structure alignment that are
also aligned in the predicted sequence alignment.

For QCombined, the seven scoring functions all behave
comparably at all levels of sequence identity, except per-
haps the LogAverage and LogOddsMultin functions, which
perform at slightly lower accuracy at low sequence identity
under these conditions (LastRound profiles, Henikoff
weighting, NoSecStr). However, QModeler and QDeveloper re-
sults show that for comparable values of QCombined, the
functions exhibit different behaviors. Some functions, such
as Correl, DotPOdds, JensenShannon, and LogOddsMultin,

Table 1. Optimized parameters for scoring functions

Function Gap open Gap extension Zero shift

Cross Product 0.81 0.06 0.92
Correl 1.39 0.07 −0.21
DotPFreq 0.07 0.005 −0.05
DotPOdds 226 11.3 −42.2
JensenShannon 0.16 0.012 −0.452
LogAverage 0.45 0.033 0.06
LogOddsMultin 11 0.83 1.6

The optimization is carried out based on a LastRound profile, excluding
columns with gaps in query sequence, and using a Henikoff weighting
scheme.
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have shorter, more accurate alignments in terms of QModeler,
and Correl and LogOddsMultin have lower values for
QDeveloper. Other functions may have lower QModeler, but
longer alignments will produce higher QDeveloper. The
CrossProduct function has the highest QDeveloper. The re-
sults indicate that judging which scoring function is best
depends on the criterion used.

The results for search specificity and sensitivity in Figure
2 (lower right panel) show that the searching abilities of the
different functions differ significantly. The LogOddsMultin,
Correl, and LogAverage scoring functions perform signifi-
cantly better than the other functions. For instance, Correl
finds 850 true positives before the 100th false positive, com-
pared with 560 for CrossProduct.

We chose three functions for further analysis—the
LogOddsMultin, JensenShannon, and CrossProduct func-

tions, because they perform well in at least one of the mea-
sures in Figure 2. Other functions could have been chosen.

Optimizing gap penalties and zero-shift
parameter with the FittedGaps scheme

Because the parameter optimization is time-consuming and
we wished to explore several other features of profile–pro-
file alignment, we decided to test a method proposed by
Rychlewski et al. (2000) for optimizing these parameters.
They proposed establishing optimized gap and zero-shift
parameters for column–column scores that follow a stan-
dard normal distribution with mean of 0.0 (without the
zero-shift) and variance of 1.0, and normalizing any scoring
system of interest to the standard normal. We tested this

Figure 2. Comparison of seven scoring functions for profile–profile alignment. Choices at specific stages of the alignment process are
listed at the top of the figure and described in Materials and Methods. (Upper left) QModeler scores; (upper right) QDeveloper scores;
(lower left) QCombined scores; (lower right) search capability as measured by the number of true positives vs. false positives. The legend
given in the lower left figure applies to all four plots.
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for the three functions we have chosen for further analy-
sis, as shown in Figure 3. The standard-normal scheme
works quite well, producing alignment quality in terms of
QCombined that is approximately equal to the fully optimized
parameters over the full range of sequence identity. This
was true without further optimization of the parameters
proposed by Rychlewski et al. Starting from the parameters
from Rychlewski et al., we optimized the parameters for
each of the three scoring schemes. The best parameters
were only slightly different from the Rychlewski parame-
ters (data not shown). Whereas optimizing on QCombined

resulted in similar results between FittedGapParam and
FullOptGapParam, the LogOddsMultin scoring function
behaves differently under the two optimization schemes.
For FullOptGapParam, as noted above, it exhibits higher
QModeler and lower QDeveloper than the others, whereas with

FittedGapParam, it behaves more like the other functions.
FittedGapParam improves the search capability of all three
scoring functions shown in Figure 3. The reason is presum-
ably that the column–column scores are adjusted individu-
ally for every pair of profiles to be aligned after calculation
of their average column–column score and its standard de-
viation. Thus, for instance, two profiles with similar amino
acid compositions will have relatively stricter gap param-
eters when compared with the adjusted column–column
scores. This may reduce false positives, for instance, for
all-� versus all-� structures.

Improving profiles

We explored several issues in constructing the profiles for
use in profile–profile alignments. These include the meth-

Figure 3. Comparison of FullOptGapParam vs. FittedGapParam for three scoring functions. Choices at specific stages of the
alignment process are listed at the top of the figure and described in Materials and Methods. (Upper left) QModeler scores; (upper right)
QDeveloper scores; (lower left) QCombined scores; (lower right) search capability as measured by the number of true positives vs. false
positives. The legend given in the lower left figure applies to all four plots.
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ods used to weight sequences used in calculating amino acid
counts and frequencies in each column of the profile; the
inclusion of positions that have a gap character in the query
sequence used to build the profile; and whether the inclu-
sion of the most distantly related sequences in a multiple
alignment improved or degraded the quality of profiles,
which we refer to as “sequence choice.” The inclusion of
positions in the profile that contain a gap in the query in the
multiple alignment did not result in improved alignments
(data not shown).

We decided to test the issues of weighting with sequence
choice together using the LogOddsMultin scoring function.
The results are shown in Figure 4. We tested three weight-
ing schemes, that of Henikoff and Henikoff used by PSI-
BLAST (Henikoff and Henikoff 1994), that of Rychlewski

et al. (2000) used in the FFAS programs, and the PSIC
scheme (Sunyaev et al. 1999) used in COMPASS (Sadreyev
and Grishin 2003). We refer to these three schemes as Heni-
koff weighting, SeqDivergence weighting, and PSIC weight-
ing, respectively. The PSIC weighting scheme appears to be
better than the Henikoff and SeqDivergence weighting
schemes in both sequence alignment accuracy using all
three quality scores and search sensitivity and specificity,
for the LogOddsMultin column–column scoring function,
regardless of what sequence choice scheme is used. The
PSIC weighting also improves alignments with the other
scoring functions (data not shown).

It is not a given that including all available sequences
related to a query will produce profiles that result in the
most accurate sequence alignments and/or the highest speci-

Figure 4. Comparison of three weighting schemes and two sequence-choice schemes for the LogOddsMultin scoring function. Choices
at specific stages of the alignment process are listed at the top of the figure and described in Materials and Methods. (Upper left)
QModeler scores; (upper right) QDeveloper scores; (lower left) QCombined scores; (lower right) search capability as measured by the number
of true positives vs. false positives. The legend given in the lower left figure applies to all four plots.
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ficity and sensitivity behaviors. For instance, adding se-
quences to the query profile that are further away from the
hit sequence or profile than is the hit itself may add noise to
the alignment. Very distantly related sequences may be
aligned accurately over only short stretches of highly con-
served sequence and misaligned everywhere else. This
would tend to decrease the specificity of the profile. How-
ever, the results indicate that cutting out the lowest identity
hits in the multiple sequence alignment tends to worsen the
alignment accuracy for all three scoring functions. It im-
proves the specificity/sensitivity for the SeqDivergence
weighting scheme and worsens it slightly for the PSIC
weighting, and has little effect on the Henikoff weighting
scheme.

Adding secondary structure information

Because profile–profile alignments are often used to align
sequences without a known structure to those with a known
structure for the purpose of structure prediction, we decided
to test whether comparing the predicted secondary structure
of a query sequence (based on its profile) and the known
secondary structure of another sequence would improve
alignments. We used a set of structure alignments, predicted
secondary structures on profiles based on the sequences in
these alignments and the PSIPRED program (Jones 1999),
and the known secondary structures of these proteins based
on their experimental structures to derive a secondary struc-
ture substitution matrix. The Secondary Structure Substitu-
tion Matrix has the form:

�Sij� =� 1.38 −1.86 −3.83

−1.19 0.81 −0.70

−3.40 −1.21 1.54
� (26)

where the rows represent predicted secondary structures,
Helix, Coil, Sheet, respectively, and the columns represent
experimental secondary structures in the same order. The
values in the matrix are sensible, because Helix-for-Sheet
substitutions are given the most negative values, and Sheet-
for-Sheet the most positive value.

To use the secondary structure substitution matrix, we
had to optimize the balance between the column–column
scores and the secondary structure matrix scores. This was
done as described in Materials and Methods. For the seven
functions we studied, the weights of the secondary structure
matrix (out of 100% total) were: CrossProduct, 20%;
LogAverage, 30%; DotPFreq, 35%; DotPOdds, 20%;
CORREL, 30%; JensenShannon, 25%; and LogOddsMultin,
30%. For all these functions, the use of the secondary
structure matrix improved sequence alignment accuracy
slightly. The results are shown in Figure 5. Secondary struc-
ture information improved the search capability of the

CrossProduct function significantly. It improved the results
for the LogOddsMultin function only at low numbers of
false positives (Fig. 5, inset).

Improving alignment accuracy

We have investigated several aspects of the profile–profile
alignment process as shown in Figure 1. We have found that
the PSIC weighting scheme, building the profile including
no gaps in the query sequence, building the profile from the
LastRound of PSI-BLAST, and adding secondary structure
information each individually improves sequence alignment
accuracy and search sensitivity and specificity. We have not
investigated all combinations of these choices, and they
may not be entirely independent. Nevertheless, to investi-
gate their combined effect, we tested each of the seven
scoring functions using PSIC weighting, LastRound mul-
tiple sequence alignments, no gaps in the query sequence,
and with secondary structure information. This is shown in
Figure 6. In terms of alignment accuracy, the DotPOdds and
DotPFreq behave a little better than the others, and the
LogAverage and CrossProduct slightly worse.

We also investigated the alignment accuracy if we picked
the best alignment in terms of QCombined out of the seven
scoring functions for each aligned pair, and this is shown in
the first three panels of Figure 6. The alignment accuracy in
terms of QCombined at low sequence identity improves from
20% to 27%. Of course, this is not possible when one does
not know the correct alignment, but it does indicate that the
seven scoring functions taken as a whole are sampling better
alignments than any one of them is able to produce consis-
tently. It may be possible that using threading techniques
one might be able to pick out the best alignment most of the
time, thus improving alignment accuracy.

The LogOddsMultin and LogAverage functions perform
better than others in terms of specificity and sensitivity,
whereas the DotPOdds behaves significantly worse. Be-
cause the scoring functions used to generate these data were
all fitted to the standard normal, they are all approximately
on the same scale. We therefore tried combining them in
one score simply by adding the scores for all seven func-
tions for each alignment pair. This results in better search
sensitivity and specificity than any of the individual scores
(Fig. 6, lower right panel). This result does not depend on
any prior knowledge of the correct answer, and therefore
could be used to improve search capability.

Discussion

Any structure prediction protocol involves several steps,
and in any one step there may be several choices of algo-
rithms or parameters to be made. It is often difficult to know
what choices make a significant difference in the outcome
of the calculations. The use of profile–profile alignments in
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comparative modeling has increased in recent years, and
thus we have investigated several of the choices to be made
in producing such alignments. Although it is difficult to
investigate all combinations of alternatives, we have iden-
tified several trends that seem useful for improving align-
ments. These include using PSIC weighting, removing po-
sitions from the profile that contain gaps in the query, using
all sequences from the multiple alignments generated from
PSI-BLAST searches of the nonredundant protein sequence
database, and using secondary structure information when
available. It also seems to be the case that adjusting the
scores relative to the gap penalty (or vice versa) for each
profile–profile comparison, rather than having a global set

of gap parameters, improves search sensitivity and align-
ment accuracy. Finally, the various scoring functions are all
fairly similar to one another once the gap penalties have
been optimized, although some functions behave differently
with respect to length of alignments and accuracy per resi-
due of the alignment.

Mittleman et al. (2003) recently published a similar study
in which they compared column–column scoring methods
in gapless alignments. They chose several functions either
the same as or quite similar to those tested here, including
Correl, DotPOdds, LogOddsMultin, CrossProduct, Jensen-
Shannon, and DotPFreq. They used a test set of 1800
pairwise structure alignments with the DALI program,

Figure 5. Effect of adding secondary structure substitution matrix to three scoring schemes. Choices at specific stages of the alignment
process are listed at the top of the figure and described in Materials and Methods. (Upper left) QModeler scores; (upper right) QDeveloper

scores; (lower left) QCombined scores; (lower right) search capability as measured by the number of true positives vs. false positives.
The legend given in the lower left figure applies to all four plots.
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whereas we have used a set of protein pairs with consistent
DALI and CE structure alignments to reduce noise due to
choice of structure alignment method. When we used the
FullOptGapParam parameters, the test set was 2305 pairs,
and with the FittedGapParam parameters, it was 3441 pairs.
They judged the alignment quality by the number of short
fragments (of length 5 or 7) correctly aligned in the top 20
hits for each pair of profiles. This parameter is not directly
comparable to QModeler, QDeveloper, or QCombined used here,
but it is probably closest to QModeler, because there is
no adjustment for the length of the structure alignment.

The results in Mittleman et al. (2003) are quite similar to
those here, with the log-odds-based methods (DotPOdds,
LogOddsMultin) and JensenShannon method behaving bet-
ter than the others. This is encouraging considering the dif-
ferent protocols used for deriving the alignments and as-
sessing their accuracy.

A key component in these results has been the use of a
large benchmark of structural alignments of homologous
proteins used in judging sequence alignment accuracy and
search sensitivity and specificity. We have been able to give
results with reasonably small uncertainties at all levels of

Figure 6. Effect of combining protocol choices for all seven scoring functions. For the first three panels, “Combined” means taking
the best scoring result of the seven scoring functions for each alignment pair. For the last panel, the scores of the seven functions were
summed and used to sort the hits to form the true/false positive curve. Choices at specific stages of the alignment process are listed
at the top of the figure and described in Materials and Methods. (Upper left) QModeler scores; (upper right) QDeveloper scores; (lower
left) QCombined scores; (lower right) search capability as measured by the number of true positives vs. false positives. The legend given
in the lower left figure applies to all four plots.
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sequence identity, to identify significant variations among
methods chosen in each step of profile–profile alignment.
This is in contrast to some smaller sets used when new
methods are developed and in the CASP series of experi-
ments, where the test sets are generally too small to reach
firm conclusions, although some important trends have been
identified (Bourne 2003; Venclovas et al. 2003). We have
used the same principle in developing side-chain prediction
(Canutescu et al. 2003) and loop modeling methods (Canu-
tescu and Dunbrack Jr. 2003), and it appears to be becoming
more the rule than the exception as recent efforts indicate
(Mittelman et al. 2003).

Acknowledgments

We gratefully acknowledge support from NIH Grants R01-
HG02302 to R.L.D. and CA06972 to Fox Chase Cancer Center, an
appropriation from the Commonwealth of Pennsylvania, and the
Pennsylvania Tobacco Settlement.

The publication costs of this article were defrayed in part by
payment of page charges. This article must therefore be hereby
marked “advertisement” in accordance with 18 USC section 1734
solely to indicate this fact.

References

Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W.,
and Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: A new genera-
tion of database programs. Nucleic Acids Res. 25: 3389–3402.

Bourne, P.E. 2003. CASP and CAFASP experiments and their findings. Meth-
ods Biochem. Anal. 44: 501–507.

Canutescu, A.A. and Dunbrack Jr., R.L. 2003. Cyclic coordinate descent: A
robotics algorithm for protein loop closure. Protein Sci. 12: 963–972.

Canutescu, A.A., Shelenkov, A.A., and Dunbrack Jr., R.L. 2003. A graph-theory
algorithm for rapid protein side-chain prediction. Protein Sci. 12: 2001–
2014.

Fischer, D., Elofsson, A., Rice, D., and Eisenberg, D. 1996. Assessing the
performance of fold recognition methods by means of a comprehensive
benchmark. Pac. Symp. Biocomput. pp. 300–318.

Frishman, D. and Argos, P. 1995. Knowledge-based protein secondary structure
assignment. Proteins 23: 566–579.

Ginalski, K., Pas, J., Wyrwicz, L.S., von Grotthuss, M., Bujnicki, J.M., and
Rychlewski, L. 2003. ORFeus: Detection of distant homology using se-
quence profiles and predicted secondary structure. Nucleic Acids Res. 31:
3804–3807.

Gribskov, M., McLachlan, A.D., and Eisenberg, D. 1987. Profile analysis: De-
tection of distantly related proteins. Proc. Natl. Acad. Sci. 84: 4355–4358.

Henikoff, S. and Henikoff, J.G. 1993. Performance evaluation of amino acid
substitution matrices. Proteins 17: 49–61.

———. 1994. Position-based sequence weights. J. Mol. Biol. 243: 574–578.
Holm, L. and Sander, C. 1993. Protein structure comparison by alignment of

distance matrices. J. Mol. Biol. 233: 123–138.
Jones, D.T. 1999. Protein secondary structure prediction based on position-

specific scoring matrices. J. Mol. Biol. 292: 195–202.

Luthy, R., McLachlan, A.D., and Eisenberg, D. 1991. Secondary structure-
based profiles: Use of structure-conserving scoring tables in searching pro-
tein sequence databases for structural similarities. Proteins 10: 229–239.

Mittelman, D., Sadreyev, R., and Grishin, N. 2003. Probabilistic scoring mea-
sures for profile–profile comparison yield more accurate short seed align-
ments. Bioinformatics 19: 1531–1539.

Murzin, A.G., Brenner, S.E., Hubbard, T., and Chothia, C. 1995. SCOP: A
structural classification of proteins database for the investigation of se-
quences and structures. J. Mol. Biol. 247: 536–540.

Panchenko, A.R. 2003. Finding weak similarities between proteins by sequence
profile comparison. Nucleic Acids Res. 31: 683–689.

Panchenko, A., Marchler-Bauer, A., and Bryant, S.H. 1999. Threading with
explicit models for evolutionary conservation of structure and sequence.
Proteins 37: 133–140.

Pei, J., Sadreyev, R., and Grishin, N.V. 2003. PCMA: Fast and accurate multiple
sequence alignment based on profile consistency. Bioinformatics 19: 427–
428.

Pietrokovski, S. 1996. Searching databases of conserved sequence regions by
aligning protein multiple-alignments. Nucleic Acids Res. 24: 3836–3845.

Rychlewski, L., Zhang, B., and Godzik, A. 1998. Fold and function predictions
for Mycoplasma genitalium proteins. Fold. Des. 3: 229–238.

Rychlewski, L., Jaroszewski, L., Li, W., and Godzik, A. 2000. Comparison of
sequence profiles. Strategies for structural predictions using sequence in-
formation. Protein Sci. 9: 232–241.

Sadreyev, R. and Grishin, N. 2003. COMPASS: A tool for comparison of
multiple protein alignments with assessment of statistical significance. J.
Mol. Biol. 326: 317–336.

Sauder, J.M., Arthur, J.W., and Dunbrack Jr., R.L. 2000. Large-scale compari-
son of protein sequence alignment algorithms with structure alignments.
Proteins 40: 6–22.

Shindyalov, I.N. and Bourne, P.E. 1998. Protein structure alignment by incre-
mental combinatorial extension (CE) of the optimal path. Prot. Eng. 11:
739–747.

Sjolander, K., Karplus, K., Brown, M., Hughey, R., Krogh, A., Mian, I.S., and
Haussler, D. 1996. Dirichlet mixtures: A method for improved detection of
weak but significant protein sequence homology. Comput. Appl. Biosci. 12:
327–345.

Smith, T.F. and Waterman, M.S. 1981. Identification of common molecular
subsequences. J. Mol. Biol. 147: 195–197.

Sunyaev, S.R., Eisenhaber, F., Rodchenkov, I.V., Eisenhaber, B., Tumanyan,
V.G., and Kuznetsov, E.N. 1999. PSIC: Profile extraction from sequence
alignments with position-specific counts of independent observations. Pro-
tein Eng. 12: 387–394.

Venclovas, C., Zemla, A., Fidelis, K., and Moult, J. 2003. Assessment of prog-
ress over the CASP experiments. Proteins 53 Suppl. 6: 585–595.

von Öhsen, N. and Zimmer, R. 2001. Improving profile–profile alignments via
log average scoring. In Algorithms in bioinformatics, First International
Workshop, WABI 2001 (eds. O. Gascuel and B.M.E. Moret), pp. 11–26.
Springer-Verlag, Berlin.

von Öhsen, N., Sommer, I., and Zimmer, R. 2003. Profile–profile alignment: A
powerful tool for protein structure prediction. Pac. Symp. Biocomput. 252–
263.

Wheeler, D.L., Church, D.M., Edgar, R., Federhen, S., Helmberg, W., Madden,
T.L., Pontius, J.U., Schuler, G.D., Schriml, L.M., Sequeira, E., et al. 2004.
Database resources of the National Center for Biotechnology Information:
Update. Nucleic Acids Res. 32 Database issue: D35–D40.

Wootton, J.C. 1994. Non-globular domains in protein sequences: Automated
segmentation using complexity measures. Comput. Chem. 18: 269–285.

Yona, G. and Levitt, M. 2002. Within the twilight zone: A sensitive profile–
profile comparison tool based on information theory. J. Mol. Biol. 315:
1257–1275.

Wang and Dunbrack Jr.

1626 Protein Science, vol. 13


